博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
[家里蹲大学数学杂志]第392期中山大学2015年泛函分析考博试题回忆版
阅读量:6156 次
发布时间:2019-06-21

本文共 1167 字,大约阅读时间需要 3 分钟。

1. ($12'$) 求 $L^p(\bbR)$, $1\leq p<\infty$; $C[0,1]$; $C_0(\bbR)$ 的共轭空间, 其中 $C_0(\bbR)$ 表示在无穷远处的极限为 $0$ 的函数, 且对 $f\in C_0(\bbR)$, $$\bex \sen{f}=\max_{x\in\bbR} |f(x)|. \eex$$ 并说明 $L^p(\bbR)$, $C[0,1]$, $C_0(\bbR)$ 哪些是可分的, 哪些是自反的? (不用证明)

 

2. ($13'$) 设 $\scrH$ 是 Hilbert 空间, $A\in\scrL(\scrH)$, 且存在 $m>0$ 使得 $$\bex |\sef{Ax,x}|\geq m\sen{x}^2,\quad \forall\ x\in\scrH. \eex$$ 试证: $\exists\ A^{-1}\in\scrL(\scrH)$.

 

3. ($20'$) 设 $\sed{\mu_n}$ 为有界数列, $\scrX$ 为 Hilbert 空间, $\sed{e_n}$ 为 $\scrX$ 上的标准正交基, $T$ 为 $\scrX$ 上的线性算子, 且 $$\bex \forall\ \sed{c_n}:\ \vsm{n}|c_n|^2<\infty,\ T\sex{\vsm{n}c_ne_n}=\vsm{n}\mu_nc_ne_n. \eex$$

(1). 试证: $T$ 有界, 并求 $\sen{T}$.

(2). $T$ 位紧算子 $\dps{\lra \vlm{n}\mu_n=0}$.

 

4. ($20'$) 设 $\scrX$ 为 Banach 空间, $f_n,f_0\in X$, 且 $$\bex \vlm{n}\sen{f_n}=\sen{f}. \eex$$ 试证: $\sed{f_n}$ 强收敛于 $f$.

 

5. ($20'$) 设 $$\bex \int_\bbR f_n(x)\rd x=1,\quad\forall\ n; \eex$$ $$\bex \vlm{n}\int_{|t|>\sigma}f_n(t)\rd t=0,\quad \forall\ \sigma>0. \eex$$ 试证: $$\bex f_n\to \delta,\mbox{ in }\mathcal{D}'(\bbR). \eex$$

 

6. ($15'$) 设 $\scrX$ 是赋范线性空间, 求证: $\scrX$ 是 Banach 空间的充要条件是 $$\bex \sed{x_n}\subset X:\ \vsm{n}\sen{x_n}<\infty \ra \vsm{n}x_n\mbox{ 收敛}. \eex$$ 

转载地址:http://piifa.baihongyu.com/

你可能感兴趣的文章
手机端userAgent
查看>>
pip安装Mysql-python报错EnvironmentError: mysql_config not found
查看>>
http协议组成(请求状态码)
查看>>
怎样成为一个高手观后感
查看>>
[转]VC预处理指令与宏定义的妙用
查看>>
MySql操作
查看>>
python 解析 XML文件
查看>>
MySQL 文件导入出错
查看>>
java相关
查看>>
由一个异常开始思考springmvc参数解析
查看>>
向上扩展型SSD 将可满足向外扩展需求
查看>>
虚机不能启动的特例思考
查看>>
SQL Server编程系列(1):SMO介绍
查看>>
在VMware网络测试“专用VLAN”功能
查看>>
使用Formik轻松开发更高质量的React表单(三)<Formik />解析
查看>>
也问腾讯:你把用户放在什么位置?
查看>>
CSS Sprites 样式生成工具(bg2css)
查看>>
[转]如何重构代码--重构计划
查看>>
类中如何对list泛型做访问器??
查看>>
C++解析XML--使用CMarkup类解析XML
查看>>